If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5100-3x^2=0
a = -3; b = 0; c = +5100;
Δ = b2-4ac
Δ = 02-4·(-3)·5100
Δ = 61200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61200}=\sqrt{3600*17}=\sqrt{3600}*\sqrt{17}=60\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{17}}{2*-3}=\frac{0-60\sqrt{17}}{-6} =-\frac{60\sqrt{17}}{-6} =-\frac{10\sqrt{17}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{17}}{2*-3}=\frac{0+60\sqrt{17}}{-6} =\frac{60\sqrt{17}}{-6} =\frac{10\sqrt{17}}{-1} $
| -4(4-5k)=17k+8 | | 2|x-5|+1=9 | | 6x×42=9x | | 90t2–207t=0 | | -1/8(x-4)=-14 | | 0.3x=0.7 | | ((x-125)/12)=2x | | x+14+5x=9+2x+5+3x | | 14(a+1)=14 | | 1.56f+36=107 | | 2/7k=18 | | 6r+8=14 | | 2u+98=10u-78 | | 15u-81=13u-57 | | 6x-2x=56x | | 6 g− 3= 45 | | 3x+23-14x=-4x-12+18x | | -x/4+8=13 | | 2n-23=n+0 | | 5x+3-9x=-5 | | 16 = 6 + 2 k | | 14g+21=21g+0 | | 3x5=9 | | 9(r+1=9 | | 81+x=128 | | 3x^2+23-14x=-4x^2-12+18x | | 59a-95=13a+89 | | 6(a-8)+22=4(a-6) | | a4=2.2 | | 11w-28=16w-78 | | 2(x+6)-3x=-40 | | 5/8=6/nn= |